Online Portfolio Selection with Group Sparsity

نویسندگان

  • Puja Das
  • Nicholas Johnson
  • Arindam Banerjee
چکیده

In portfolio selection, it often might be preferable to focus on a few top performing industries/sectors to beat the market. These top performing sectors however might change over time. In this paper, we propose an online portfolio selection algorithm that can take advantage of sector information through the use of a group sparsity inducing regularizer while making lazy updates to the portfolio. The lazy updates prevent changing ones portfolio too often which otherwise might incur huge transaction costs. The proposed formulation leads to a non-smooth constrained optimization problem at every step, with the constraint that the solution has to lie in a probability simplex. We propose an efficient primal-dual based alternating direction method of multipliers algorithm and demonstrate its effectiveness for the problem of online portfolio selection with sector information. We show that our algorithm OLU-GS has sub-linear regret w.r.t. the best fixed and best shifting solution in hindsight. We successfully establish the robustness and scalability of OLU-GS by performing extensive experiments on two real-world datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Learning of Portfolio Ensembles with Sector Exposure Regularization

We consider online learning of ensembles of portfolio selection algorithms and aim to regularize risk by encouraging diversification with respect to a predefined risk-driven grouping of stocks. Our procedure uses online convex optimization to control capital allocation to underlying investment algorithms while encouraging non-sparsity over the given grouping. We prove a logarithmic regret for t...

متن کامل

Online Resource Allocation with Structured Diversification

A variety of modern data analysis problems, ranging from finance to job scheduling, can be considered as online resource allocation (ORA) problems. A key consideration in such ORA problems is some notion of risk, and suitable ways to alleviate risk. In several settings, the risk is structured so that groups of assets, such as stocks, are exposed to similar risks. In this paper, we present a for...

متن کامل

Portfolio selection through imprecise Goal Programming model: Integration of the manager`s preferences

In the portfolio selection problem, the manager considers several objectives simultaneously such as the rate of return, the liquidity and the risk of portfolios. These objectives are conflicting and incommensurable. Moreover, the objectives can be imprecise. Generally, the portfolio manager seeks the best combination of the stocks that meets his investment objectives. The imprecise Goal Program...

متن کامل

A new framework for high-technology project evaluation and project portfolio selection based on Pythagorean fuzzy WASPAS, MOORA and mathematical modeling

High-technology projects are known as tools that help achieving productive forces through scientific and technological knowledge. These knowledge-based projects are associated with high levels of risks and returns. The process of high-technology project and project portfolio selection has technical complexities and uncertainties. This paper presents a novel two-parted method of high-technology ...

متن کامل

Sparse Portfolio Selection via Quasi-Norm Regularization

to obtain an approximate second-order KKT solution of the `p-norm models in polynomial time with a fixed error tolerance, and then test our `p-norm models on CRSP(1992-2013) and also S&P 500 (2008-2012) data. The empirical results illustrate that our `p-norm regularized models can generate portfolios of any desired sparsity with portfolio variance, portfolio return and Sharpe Ratio comparable t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014